A robust and efficient solver based on kinetic schemes for Magnetohydrodynamics (MHD) equations

نویسندگان

چکیده

This paper is devoted to the simulation of compressible magnetohydrodynamic (MHD) flows with Lattice Boltzmann Method (LBM). The usual LBM limited low-Mach flows. We propose a robust and accurate numerical method based on vectorial kinetic construction [5,25], which allows us extend arbitrary Mach also explain how adjust viscosity in order obtain stable results smooth or discontinuous parts flow reduced divergence errors. can handle shock waves be made second regions. It very well adapted computing Graphics Processing Unit (GPU). Our GPU implementation 2D achieves state-of-the-art accuracy, near-optimal performance. finally present computations tilt instability that demonstrate capability physically relevant simulations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A robust solver for the finite element approximation of stationary incompressible MHD equations in 3D

In this paper, we propose a Newton-Krylov solver and a Picard-Krylov solver for finite element discrete problem of stationary incompressible magnetohydrodynamic equations in three dimensions. Using a mixed finite element method, we discretize the velocity and the pressure by H1(Ω)-conforming finite elements and discretize the magnetic field by H(curl,Ω)-conforming edge elements. An efficient pr...

متن کامل

Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations

Many kinetic models of the Boltzmann equation have a diiusive scaling that leads to the Navier-Stokes type parabolic equations as the small scaling parameter approaches zero. In practical applications, it is desirable to develop a class of numerical schemes that can work uniformly with respect to this relaxation parameter, from the rareeed kinetic regimes to the hydrodynamic diiusive regimes. A...

متن کامل

global results on some nonlinear partial differential equations for direct and inverse problems

در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...

An efficient solver for the equations of resistive MHD with spatially-varying resistivity

We regularize the variable coefficient Helmholtz equations arising from implicit time discretizations for resistive MHD, in a way that leads to a symmetric positive-definite system uniformly in the time step. Standard centered-difference discretizations in space of the resulting PDE leads to a method that is second-order accurate, and that can be used with multigrid iteration to obtain efficien...

متن کامل

Constraint Preserving Schemes Using Potential - Based Fluxes . Iii . Genuinely Multi - Dimensional Schemes for Mhd Equations ∗

We design efficient numerical schemes for approximating the MHD equations in multidimensions. Numerical approximations must be able to deal with the complex wave structure of the MHD equations and the divergence constraint. We propose schemes based on the genuinely multidimensional (GMD) framework of [31, 32]. The schemes are formulated in terms of vertex-centered potentials. A suitable choice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2023

ISSN: ['1873-5649', '0096-3003']

DOI: https://doi.org/10.1016/j.amc.2022.127667